Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic : 6_ Further Mechanics

Name of the Student:				

Max. Marks: 17 Marks

Time: 17 Minutes

Mark Schemes

Q1.

Question Number	Acceptable Answers			Additional guidance	
а	•	fundamental – quarks and leptons Baryons made of 3 q	(1) (1)	MP2 and 3 could be given for a named particle and its quark composition	
	•	Mesons made of quark and antiquark	(1)	Can be inferred if either set named	5
	•	6 quark Or 6 leptons	(1)		
	•	Each particle has an antiparticle	(1)		

Question Number	Acceptable Answers	Ser III	Additional guidance	Mark
b	 Use of ΔE = Δmc² Conversion of J to eV mass = 120 GeV/c² 	(1) (1) (1)	Example of calculation: $E = 2.2 \times 10^{-25} \text{kg} \times (3.0 \times 10^8)^2 (\text{ms}^{-1})^2$ $E = 1.98 \times 10^{-8} \text{J}$ $E = 1.98 \times 10^{-8} \text{J} \div 1.6 \times 10^{-19} \text{JeV}^{-1}$ $E = 124 \times 10^9 \text{ eV}$	3

Question Number	Acceptable Answers			Additional guidance	
c(i)	•	Energy (of protons) converted to mass (of Higgs) Or Energy is required to overcome electrostatic repulsion between protons	(1)	Alternative based on numerical values: Observation that Higgs mass is 120 GeV/c ² This requires an energy of at least 120 GeV Each beam of protons would need an energy of at least 60 GeV	3
	•	Reference to $E = mc^2$ (can be written in any form)	(1)		
	•	Because c^2 is very large (E must be large) Or Higgs particle is massive so needs a lot of energy to create it	(1)		
c(ii)	•	Use of circumference = $2\pi r$	(1)	Example of calculation: $r = 27000 \div 2\pi$ r = 4300 m	3
	•	Use of $p = Bqr$ $p = 5.7 \times 10^{-15} \text{ Ns}$	(l) (l)	$p = 8.3T \times 1.6 \times 10^{-19} \text{C} \times 4300\text{m}$ $p = 5.7 \times 10^{-15} \text{Ns}$	
ciii	0	p 5.7 ~ 10 113	(1)	zero	1

Question Number	Acc	eptable Answers		Additional guidance	Mark
d	•	High speeds Or relativistic Mass (of proton) increases Or this equation is only valid at non-relativistic speeds	(1)	Alt: speeds close to speed of light	2