Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic : 6_ Further Mechanics

Name of the Student:	

Max. Marks: 18 Marks

Time: 18 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers		Additional guidance	Mark
i	• use of $s = \frac{(u+v)}{2} \times t$ • $v = 3.1 \text{ (m s}^{-1})$	(1)	Example of calculation: $1.1 m = \frac{(0+v)}{2} \times 0.77 \text{ s}$	
ii	 use of F = mv²/r F = 11 N (allow ecf from (i)) 	(1)	$v = 3.1 \text{ m s}^{-1}$ Example of calculation: $F = \frac{0.050 \text{ kg} \times 3.1^{2} \text{ (m s}^{-1})^{2}}{0.042 \text{ m}}$ $F = 11.4 \text{ N}$	2
8			"show that value" gives $F = 10.7 \text{ N}$	2

Q2.

Question Marks	Acceptable Answers		Additional guidance	Mark	
	•	Magnet accelerates ball Or magnet increases ball's KE	(1)	Marks can be gained by discussing either set of balls	3
	•	Momentum is conserved in the collision(s)	(1)		
	•	(Since collisions are elastic) KE conserved so third ball moves off with the same velocity/KE as incoming ball hit magnet with	(1)		

Question Number	Answer		Mark
(a)(i)	See $F = GMm/r^2$	(1)	
	Equated to mg to give required expression Or use of g = F/m	(1)	2
(a)(ii)	Use of $g = \omega^2 r OR g = v^2/r$	(1)	
	Use of $\omega = 2\pi/T$ OR $v = 2\pi r/T$	(1)	
	Correct algebra leading to expression given	(1)	3
	Example of calculation:		
	$\omega^2 r = \frac{GM}{r^2}$		
	$\left(\frac{2\pi}{T}\right)^2 = \frac{GM}{r^3}$		
	$\omega^{2} r = \frac{GM}{r^{2}}$ $\left(\frac{2\pi}{T}\right)^{2} = \frac{GM}{r^{3}}$ $r^{3} = \frac{GMT^{2}}{4\pi^{2}}$		
(a)(iii)	See T = 24 hours	(1)	
	T converted into s $r = 4.2 \times 10^7 \text{ m}$	(1) (1)	3
	Example of calculation:		
	$T = 24 \times 60 \times 60 \text{ s} = 86400 \text{ s}$		
	$r^{3} = \frac{GMT^{2}}{4\pi^{2}} = \frac{6.67 \times 10^{-11} \text{ N m}^{2} \text{ kg}^{-2} \times 6.0 \times 10^{24} \text{ kg} \times (86400 \text{ s})^{2}}{4\pi^{2}} = 7.57 \times 10^{22} \text{ m}^{3}$		
	$r = \sqrt[3]{7.57 \times 10^{22} \text{ m}^3} = 4.23 \times 10^7 \text{ m}$		
(b)	The satellite must rotate with the Earth		
	Or the satellite must be in a geosynchronous orbit		
	Or any non-equatorial orbit would cause the satellite to move N-S		1
	Total for question		9

Q4.

Question Number			Additional guidance	Mark
	• Use of $F = \frac{mv^2}{r}$	(1)	Example of derivation: $mg = \frac{mv^2}{r}$	(2)
	 States that F = mg only as reaction force is zero 	(1)	$v = \sqrt{gr}$	0.000