Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic : 6_ Further Mechanics

Name of the Student:_____

Max. Marks: 19 Marks

Time: 19 Minutes

Mark Schemes

Q1.

Question number	Acceptable answers	Additional guidance	Mark 3
(i)	remain in their seat normal reaction $R \ge 0$ (1)	cample of calculation: $\frac{v^2}{r} = mg$ $= \sqrt{rg} = \sqrt{8.5 \text{m} \times 9.81 \text{m} \text{s}^{-2}} = 9.13 \text{m} \text{s}^{-1}$	
(ii)	 Equate decrease in gravitational potential energy to increase in kinetic energy at top loop (1) Adds this to 17.0 (1) Δh = 21.3 m (1) 	of Example of calculation: $mgh = \frac{1}{2}mv^{2}$ $h = \frac{v^{2}}{2g} = \frac{(9.13 \text{ m s}^{-1})^{2}}{2 \times 9.81 \text{ m s}^{-2}} = 4.25 \text{ m}$ $\Delta h = 17 + 4.3 = 21.3 \text{ m}$	

Q2.

Question Number	Acceptable answers		Additional guidance	Mark
	convert to radians	(1)	Example of calculation	2
	• $\omega = 52 \text{ rad s}^{-1}$	(1)	$\omega = \frac{500 \times 2\pi}{60}$ $\omega = 52.4 \text{ radians s}^{-1}$	

Q3.

Question Number	Acceptable answers		Additional guidance	Mark
(a)	 Replace Work W by force × distance Replace distance ÷ time by velocity v Use v = r × Angular velocity Recognise F × r is the moment of F 	(1) (1) (1) (1)	Alternative method: Consider one revolution of axle, Load rises $2\pi r$ Work done = $2\pi rF$ Time taken = $2\pi \div \omega$ Power = Work \div time= $2\pi rF \div 2\pi/\omega$ to give reqd eq	4
Question Number	Acceptable answers		Additional guidance	Mark
(b)(i)	Arrow away from + charge Or arrow towards - charge At least 3 Equipotential lines, perpendicular to field lines Symmetrical about vertical/horizontal axis and not touching/crossing	(1) (1) (1)	MP3 dependent on lines being perpendicular in MP2	3

Question Number	Acceptable answers		Additional guidance	Mark
(b)(ii)	• Use of $F = \frac{Q_1 Q_2}{4\pi \varepsilon_o r^2}$ • $F = 0.036$ (N)	(1) (1)	Example of calculation: $F = 8.99 \times 10^{9} \text{Nm}^{2}\text{C}^{-2} \frac{(0.1 \times 10^{-6} \text{C})^{2}}{(0.05 \text{m})^{2}}$ $F = 0.036 \text{N}$	2

Question Number	Acceptable answers		Additional guidance	Mark
(c)	 Use of moment = F x Expression for correct moment Use of power = moment of force x angular velocity Only realistic possibility is pond pump and P = 0.6W (calculated answer could also be force and then comparison 	(1) (1) (1)	Show that value gives 3.2×10^{-3} Nm and 0.64 W Example of calculation: Moment $= 0.036\text{N} \times 0.04\text{m} \times 2 = 2.89 \times 10^{-3} \text{ Nm}$ Power = 2.89×10^{-3} N m × $200\text{s}^{-1} = 0.58$ W	4