Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: 2 (Mechanics)

Name of the Student:

Max. Marks : 25 Marks Time : 25 Minutes

Mark Schemes

Q1.

Question Number	Answer		Mark
(a)	Use of power = intensity x area Use of time = energy / power Time = 19 s	(1) (1) (1)	3
	Example of calculation $P = 8000 \text{ W m}^{-2} \times 1.5 \times 10^{-5} \text{ m}^2$ $= 0.12 \text{ J s}^{-1}$ $t = 2.3 \text{ J} \div 0.12 \text{ J s}^{-1}$ = 19 s		
(b)(i)	Use of $E = IVt$ Energy = 19 000 J (2 sf)(no ue) Example of calculation $E = 1.4 \text{ A} \times 3.7 \text{ V} \times (60 \times 60) \text{ s}$ = 18 648 J	(1) (1)	2
(b)(ii)	Energy required = 210 x 2.3 J Use of efficiency = output energy / input energy Efficiency = 0.026 or 2.6% Example of calculation efficiency = 210 × 2.3 J × 100 % ÷ 19 000 J = 0.026 or 2.6%	(1) (1) (1)	3
	Total for question		8

Question Number	Answer		Marl
(a)(i)	Use of $P = IV$	(1)	
	Power = 2900 W	(1)	2
	Example of calculation		
	Power = $12.5 \text{ A} \times 230 \text{ V} = 2875 \text{ W}$		
(a)(ii)	P = E/t	(1)	11111
	Energy = 400 000 J (ecf from (i))	(1)	2
	Example of calculation		
	Energy = $2875 \text{ W} \times 140 \text{ s} = 402 500 \text{ J}$		
(a)(iii)	Use of efficiency = useful energy output / total energy input	(1)	11111
	= 0.87 or 87% (ecf from (ii)) (do not award if > 100%)	(1)	2
	Example of calculation		
	Efficiency = 351 000 J / 402 500 J = 0.87 or 87%		
(b)	Some energy transferred by heating the kettle / element / wires / surroundings		
	Or Some energy transferred as sound	(1)	
	So not all of the (input) energy is transferred to (heating) the water Or so useful energy output is less than energy input		
	Or only the energy heating the water is useful		
		(1)	2
	Total for question		8

Question Number	Acceptable Answers		Mark
(a)	Use of an equation of motion involving $a = g$ or $-g$ (1) $v = u + at \text{ with } v \text{ or } u = 0 \text{ and double } t$		
	v - u + ui with v or $u - 0$ and double i		
	Use of $s = ut + \frac{1}{2} at^2$ with $s = 0$		
	Or		
	Use of $a = \frac{v - u}{t}$ with $v = -u$		
	Or		
	Find max $s = 0.40$ m then use $s = \frac{1}{2}(v + u) t$ and double t (do not award MP2 if 8 m s ⁻¹ used)	(1)	3
	Time = 0.57 or $0.58(s)$	(1)	
	(Do not award 3 rd mark if negatives have been ignored.)		
	Example of calculation: using $a = \frac{v - u}{t}$		
	$t = \frac{0 - 2.8 \mathrm{ms}^{-1}}{-9.81 \mathrm{m s}^{-2}} = 0.285 \mathrm{s}$ to reach top of jump		
	t = 0.57 (s)		

Question Number	Acceptable Answers		Mark
(b)	Use of distance = $8 \text{ m s}^{-1} \times \text{time}$ (either their time or 0.6 s)	(1)	
	Distance = $4.6 \text{ m} \text{ (ecf (a))}$ (If show that value of 0.6 s used then $d = 4.8 \text{ m}$)	(1)	2
	Example of calculation Distance = $8.0 \text{ m s}^{-1} \times 0.57 \text{ s}$ Distance = 4.6 m		

Question Number			rk
(c)	Attempt to calculate total / extra time using correct equations with correct vertical values (1)	
	t = 0.14 s or 1/7 s extra time for additional drop assuming $u = 2.8$ m s ⁻¹ $t = 0.43$ s or 3/7 s time from calculation of maximum height using $u = 0$ $t = 0.71$ s or 5/7s time for whole trajectory using $s = -0.5$ m	1)	
	Distance = $8.0 \text{ m s}^{-1} \times \text{time}$	1)	
	Extra horizontal distance travelled = 1.1m to 1.2m	1)	4
	Example of calculation $v^2 = (2.8 \text{ m s}^{-1})^2 + (2 \times 9.81 \text{ m s}^{-2} \times 0.50 \text{ m})$ $v = 4.2 \text{ m s}^{-1}$		
	$t = \frac{4.2 \mathrm{m s^{-1}} - 2.8 \mathrm{m s^{-1}}}{9.81 \mathrm{m s^{-2}}}$		
	t = 0.14 s Distance = 8.0 m s ⁻¹ × 0.14 s Distance = 1.1 m		
	Total for question		9