Practice Question Set For A-Level

Subject: Physics

Paper-3 Topic: Section B (Section 11_ Engineering Physics)

1

5

Name of the Student:	
Max. Marks: 21 Marks	Time : 21 Minutes

Max. Marks: 21 Marks

Mark Schemes

Q1.

(a) Energy is supplied to the air by heating only in process $2 \rightarrow 3$ Automarked

Claim A: Each square represents 10 J ✓ (b) Area of loop $4 \rightarrow 5 \rightarrow 1 \rightarrow 4 = 9$ squares Giving increase in work done = 90 J ✓

> <u>Claim B</u>: area enclosed by loop $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 = 55 \text{ sq}/550 \text{ J}$ (Each square represents 10 J) Increase in efficiency = 9 sq/55 sq or 90 J/550 J = 16% ✓ So claim A not met, claim B efficiency better than claimed 🗸

OR Claim B:

Area enclosed by loop $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 = 55 \text{ sg} /550 \text{ J}$ Divides 550 J and 640 J by any same value for (heat) input energy And calculates increase in efficiency 🗸

Draws correct conclusion for A and B for answers 🗸 W done per square = $0.1 \times 10^{-3} \times 1.00 \times 10^{5} = 10 \text{ J}$

Allow 8 to 11 squares giving 80J to 110 J

Accept answers where area $4 \rightarrow 5 \rightarrow 1 \rightarrow 4$ is approximated to a triangle giving 112(.5) J

Allow 50 to 60 squares giving 500 to 600 J

ECF from above areas if out of tolerance

Allow last mark only if statements re claims agree with answers

Example 550/1000 = 0.55 or 55%; 640/1000 = .64 or 64%

Increase in efficiency = 9%

Values for input energy must > 640 J

- Q: energy supplied/transferred/input (to system/gas by heating/heat transfer) 🗸 (c)
 - OR energy transferred/lost/output (from system/gas by cooling heat transfer) if Q negative

 ΔU : increase/change in internal energy \checkmark

OR decrease if negative

Do not allow 'heat' in place of 'energy'

'Heat transferred' on its own is not enough

Accept heat energy supplied but not heat supplied

2

(d)
$$W = p\Delta V = 1.0 \times 10^5 \times (3.00 - 1.50) \times 10^{-3} \text{ J } (= 150 \text{ J}) \checkmark$$

(Use of
$$Q = \Delta U + W$$
)

gives
$$Q = -150 + (-374) = (-)524 J$$

Check that sign convention is consistent for 2nd mark Allow if – sign not seen on answer line

(e) Attempt to use $pV = nRT \checkmark$

Recognises max temperature is at point 3 in the cycle 🗸

Substitution of p, V and n in $T = \frac{pv}{nR}$ for point 3

Giving
$$T = 1310 \text{ K}$$

2nd mark can be implied from values of p and V used in the equation p from 14.2×10^5 to 14.8×10^5 Pa V from 0.42×10^{-3} to 0.48×10^{-3} m³

[13]

3

Q2.

(a)

Translational dynamics	Rotational dynamics
force	torque 🗸
mass	moment of inertia 🗸

Do not allow 'inertia'

2

1

2

3

(b)
$$I_T = 2.6 \times 10^7 + (2.2 \times 10^3 \times 35^2) = 2.9 \times 10^7 \text{ (kg m}^2)$$

Mark only awarded for arriving at correct answer to more than 1 sf.

(c) Use of (total) area under graph = (angular) displacement/distance 🗸

$$\omega_{\text{max}}((\frac{1}{2} \times 30) + 20 + (\frac{1}{2} \times 45)) = 4.7$$

$$\omega_{\text{max}}$$
 = 0.082 (rad s-1) \checkmark

Alternative route is area of trapezium

$$\frac{1}{2} \omega_{max} (20 + 95) = 4.7$$

(d) moment of inertia of rotating jib + load increases as trolley moves outwards 🗸

reference to $T = I\alpha$ with T constant, so α decreases \checkmark

decreased α means longer time to stop(than 95 s) \checkmark

[8]