Practice Question Set For A-Level

Subject : Physics

Paper-3 Topic: Section B (Section 13_ Electronics)

Name of the Student:	
Max. Marks : 21 Marks	Time : 21 Minutes
	•

Q1.

A die, where dots on the faces of a cube indicate the numbers 1 to 6, is shown in **Figure 1** and is used in many games.

Figure 1

A student makes an electronic version of this by feeding pulses from a pulse generator into a 4-bit binary counter.

The circuit uses the first three outputs of the counter A (least significant bit), B and C.

By feeding the outputs from the counter through logic gates, the seven LEDs shown in **Figure 2** can be made to display the numbers 1 to 6 in sequence.

Figure 2

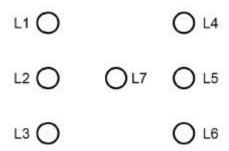
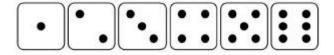



Figure 3 shows the sequence of numbers.

Figure 3

The black dots show which LEDs are lit for each of the numbers 1 to 6.

The partially completed truth table below shows which of the LEDs (L1 to L6) are ON (logic 1) and which are OFF (logic 0) during the counting sequence.

Number	Logic inputs	Logic outputs

shown on die	С	В	Α	L1	L2	L3	L4	L5	L6	L7
1	0	0	0		0	0	0	0		1
2	0	0	1		0	0	0	0		0
3	0	1	0		0	0	0	0		1
4	0	1	1		0	1	1	0		0
5	1	0	0		0	1	1	0		1
6	1	0	1		1	1	1	1		0
Reset 6 → 1										

(a) Complete the table to show the logic outputs for the lamps L1 and L6.

(2)

(b) Deduce the **simplest** Boolean expression that can be used to show how output L7 can be controlled by the logic inputs.

(1)

(c) Figure 4 shows some of the input and output pins of the 4-bit binary counter.

Figure 4

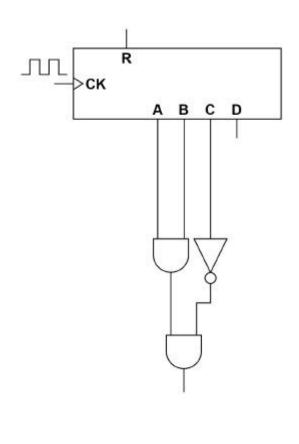
R

CK

A B C D

The data sheet for the counter indicates that the counter resets when the reset pin **R** is taken from logic 0 to logic 1.

Draw on **Figure 4** the logic gate needed and the connections required from the outputs to the reset pin **R** on the counter so that the counter cycles as required.


(2)

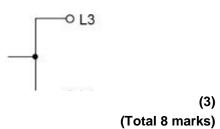
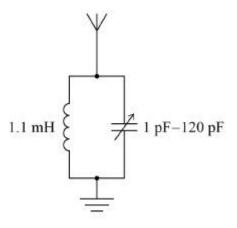

(d) The output of both L3 and L4 can be written as $(A.B.\overline{C}) + (\overline{B}.C)$

Figure 5 shows part of a logic circuit needed to represent this Boolean expression.

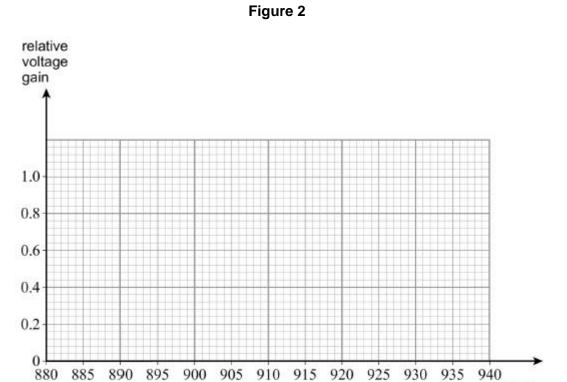
Complete the logic circuit in Figure 5 by adding AND, OR and NOT gates.

Figure 5



Q2.

Figure 1 shows the first-stage filter circuit for a simple AM receiver. The circuit can be adjusted to resonate at 910 kHz so that it can receive a particular radio station.


Figure 1

(a) Calculate the value of the capacitance when the circuit resonates at a frequency of 910 kHz.

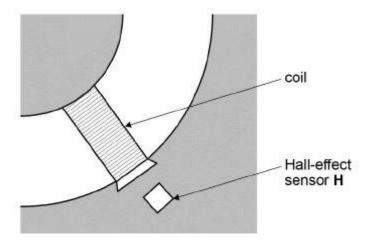
(2)

(b) Draw on Figure 2 an ideal response curve for the resonant circuit, labelling all relevant frequency values based upon a 10 kHz bandwidth.
--

(3)

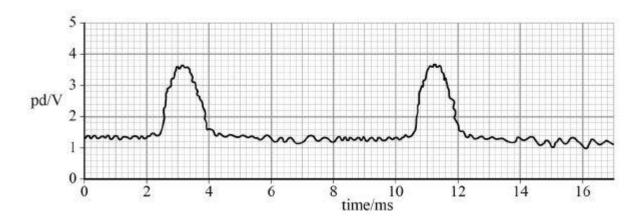
(c) The Q-factor for the practical tuning circuit has a smaller value than the ideal one assumed in question (b).

Discuss the changes the li	stener might notice	when tuning to this	station due to th	e practical
Q-factor being smaller.	-	_		



(2) (Total 7 marks)

Q3.


The diagram shows part of the motor from a computer disk drive.

frequency / kHz

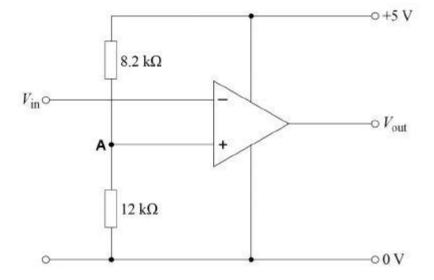
On each rotation a small magnet passes a Hall-effect sensor **H** which detects the change in magnetic field and produces an output potential difference (pd) that varies with time as shown in **Figure 1**.

Figure 1

(a) Determine the speed of the motor in revolutions per second.

speed of motor = _____ rev s⁻¹

(2)


(b) Explain why the output from the magnetic field sensor is unsuitable to be applied directly to the logic circuit of the motor controller.

(1)

(c) The signal from the magnetic field sensor is applied to the circuit shown in Figure 2.

Figure 2

Show that the potential of point ${\bf A}$ is about +3 V.

(1)

(d) Draw on **Figure 1** the waveform showing the variation with time of the output voltage $V_{\rm out}$ of the circuit shown in **Figure 2**.

(2)

(Total 6 marks)