Practice Question Set For A-Level

Subject: Physics

Paper-3 Topic: Section A(Practical Skills Set-3)

1

2

Name of the Student:

Max. Marks: 16 Marks

Time: 16 Minutes

Mark Schemes

Q1.

(a) boundary where the escape velocity = c 🗸

(b) (i) use of Rs = $2GM/c^2$ to give Rs = $2 \times 6.67 \times 10^{-11} \times 60 \times 10^6 \times 1.99 \times 10^{30}/(3 \times 10^8)^2$ \checkmark = 1.8×10^{11} m \checkmark

(ii) use of D = M/V to give D = $60 \times 10^6 \times 2 \times 10^{30}/(4/3\pi (1.78 \times 10^{11})^3)$ \checkmark = 5.1×10^3 kg m⁻³ \checkmark

[5]

3

1

Q2.

(a)
$$\lambda$$
 [the gradient] = (-) 0.015 $\left[(-)\frac{0.3}{2.0} \text{ or similar} \right]$

$$N_{\frac{1}{2}}$$
 from (-) $\frac{ln}{\lambda} \left[(-) \frac{ln2}{0.015} \right]$

46.2(1) slides (accept 46 but do not penalise '47 slides needed to halve V') \checkmark

 $[\lambda = 0.015 \text{ or use of ratio} \quad \frac{0.3}{20} \checkmark$

determination of $V_0 = 424(.1) \text{ mV}$; $\ln(V_0/2) = 5.36 [5.357]$

 $\frac{6.05-5.36}{0.015} = 46(.0) \text{ slides (accept 46.2, '47 slides needed to halve } V' \text{ etc } \checkmark]$

- (b) (i) (student must measure or calculate) thickness of slide, t; half-value thickness = $N_{1/2} \times t$ [= result from (a) $\times t$] \checkmark
 - (ii) procedure: measure the thickness of multiple slides (either singly or in a stack) and

calculate average thickness [divide by number of slides] ✓ (reject bland 'repeat and average')

[measure the thickness at **different points** on the slide, and **average** by number of readings or measure the thickness of different slides and average]

(iii) procedure: close jaws and check reading (= zero) ['check for zero error'] ✓

(reject idea of measuring 'known' dimension and checking reading or that 1 micrometer is 'zeroed'/'set to zero'/'zero calibrated' before use')

- (c) $t \text{ from } \frac{(R_2 R_0)}{12} = 1.19 \text{ mm} (3 \text{ sf only}) \checkmark$
- (d) $n = \frac{14.28}{9.71} = 1.47$, no unit (3 sf preferred but tolerate 4 sf, do not penalise here and in part a for sf) \checkmark
- (e) (i)/(ii) $\Delta (R_2 R_0) = \Delta (R_2 R_1) = 0.08 \text{ mm} \checkmark$
 - (iii) $P_{2-0} = \%$ uncertainty in $(R_2 R_0) = 100 \times \frac{0.08}{14.28} = 0.56(0)\%$ [0.6%] and $P_{2-1} = \%$ uncertainty in $(R_2 R_1) = 100 \times \frac{0.08}{9.71} = 0.82(4)\%$ [0.8%] \checkmark working must be shown; allow ecf from i/ii but only if working is correct $P_n = \%$ uncertainty in $n = (P_{2-0}) + (P_{2-1}) = 1.38(4)\%$ (accept 1.4 %) \checkmark for ecf from i/ii working in iii must be valid; for AE in iii allow ecf in final calculation

[max and min values calculated, eg $n_{\rm min} = \frac{14.28 - 0.08}{9.71 + 0.08}$, $n_{\rm max} = \frac{14.28 + 0.08}{9.71 - 0.08}$; difference = ½ range (\checkmark) convert to % = 1.38 (± 0.02)% (\checkmark)]

[11]

2

1

1

1

1

1