Practice Question Set For A-Level

Subject : Physics

Paper-3 Topic: Section A(Practical Skills Set-2)

. Ma	rks : 25 Marks Time	: 25 Minu
۱.		
This	s question is about capacitor charging and discharging.	
shov	tudent designs an experiment to charge a capacitor using a constant current. The figure was the circuit the student designed to allow charge to flow onto a capacitor that has bee charged.	
	capacitor shorting lead	
	<u> </u>	
figui lead The	e student begins the experiment with the shorting lead connected across the capacitor a re above. The variable resistor is then adjusted to give a suitable ammeter reading. The d is removed so that the capacitor begins to charge. At the same instant, the stop clock is estudent intends to measure the potential difference (pd) across the capacitor at 10 s in	shorting s started.
figui lead The	re above. The variable resistor is then adjusted to give a suitable ammeter reading. The d is removed so that the capacitor begins to charge. At the same instant, the stop clock is	shorting s started.
figur lead The while	re above. The variable resistor is then adjusted to give a suitable ammeter reading. The d is removed so that the capacitor begins to charge. At the same instant, the stop clock is student intends to measure the potential difference (pd) across the capacitor at 10 s in	shorting s started. tervals
figur lead The while	The variable resistor is then adjusted to give a suitable ammeter reading. The d is removed so that the capacitor begins to charge. At the same instant, the stop clock is student intends to measure the potential difference (pd) across the capacitor at 10 s in le adjusting the variable resistor to keep the charging current constant.	shorting s started. atervals
The while	The variable resistor is then adjusted to give a suitable ammeter reading. The d is removed so that the capacitor begins to charge. At the same instant, the stop clock is estudent intends to measure the potential difference (pd) across the capacitor at 10 s in le adjusting the variable resistor to keep the charging current constant. The power supply has an emf of 6.0 V and negligible internal resistance. The capacitor has a cacitance of 680 μ F. The variable resistor has a maximum resistance of 100 k Ω .	shorting s started. atervals
The while	The variable resistor is then adjusted to give a suitable ammeter reading. The d is removed so that the capacitor begins to charge. At the same instant, the stop clock is student intends to measure the potential difference (pd) across the capacitor at 10 s in le adjusting the variable resistor to keep the charging current constant. The power supply has an emf of 6.0 V and negligible internal resistance. The capacitor has acitance of 680 μ F. The variable resistor has a maximum resistance of 100 k Ω . The student chooses a digital voltmeter for the experiment. A digital voltmeter has a resistance.	shorting s started. atervals

Suggest a suitable full scale deflection for an analogue ammeter to be used in the experiment
full scale deflection =
The diagram shows the reading on the voltmeter at one instant during the experiment. The manufacturer gives the uncertainty in the meter reading as 2%.
2.39 V
Calculate the absolute uncertainty in this reading.
uncertainty =\
Determine the number of different readings the student will be able to take before the capacitor becomes fully charged.
number =

from the experiment produces a straight-line graph for the variation of pd with time. This shows that the pd across the capacitor increases at a rate of 98 mV s⁻¹.

Calculate the capacitance of the capacitor.

Dedu	uce whether the capacitor is within the manufacturer's tolerance.	
he s	student decides to confirm the value of the capacitance by first determining the time stant of the circuit when the capacitor discharges through a fixed resistor.	
Des	cribe an experiment to do this. Include in your answer:	
•	a circuit diagram an outline of a procedure	
•	an explanation of how you would use the data to determine the time constant.	

(4)

(Total 15 marks)

0	2
w	~ .

 .								
The concave	mirrore lie	ad in come	ratlactina	talacconac	can cuttor	trom ci	nharical	aharration
THE CONCAVE	TITILI OLO UO	eu iii soiiie	renecting	lelescopes	can sunci	iioiii oi	pricricar	abenation.

(a)	Draw a diagram to show what is meant by spherical aberration when produced by a concave
	mirror

(2)

(b) The International Ultraviolet Explorer (IUE) and the Gran Telescopio Canarias (GTC) are two examples of reflecting telescopes.

The table below summarises some of the properties of the two telescopes.

Name	IUE	GTC		
Objective Diameter	0.45 m	10.4 m		
Location	Geosynchronous Earth orbit	Earth's surface, 2300 m above sea level		
Spectrum detected	Ultraviolet	Visible and Infrared		
Typical wavelength detected	2.0 × 10 ⁻⁷ m	1.0 × 10 ^{−6} m		

Compare the two telescopes in terms of their location, collecting power and minimum angular resolution.

	ions to su	r compar	isons.		
,					

	-
	•
	-
	-
	-
	-
	-
	-
	-
	-
	_
	-
	_
	-
	_
	(6
The Charge Coupled Device (CCD) is an important part of the detection system of modern telescopes due to its high quantum efficiency.	nany
Explain what is meant by quantum efficiency and compare the quantum efficiency of with that of the eye.	a CCD
	•
	-
	(2
	(Total 10 marks

(c)