Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: Fields And Their Consequences(Nuclear Physics)

Name of the Student:

Max. Marks: 20 Marks			Time: 20 Minutes	
Mark Schemes				
Q1.	(:)	Attachent to war I/E		
(a)	(i)	Attempt to use KE = $3/2 kT$ expect $0.75 = 3/2 \times 1.38 \times 10^{-23} T$	C1	
		Or correct conversion to J $0.75 \times 1.6 \times 10^{-19}$	O1	
		Correct equations $0.75 \times 1.6 \times 10^{-19} = 3/2 \cdot 1.38 \times 10^{-23} \ T$		
			C1	
		5800 K		
			A1	3
	(ii)	Attempt to use energy = $qQ/4\pi\varepsilon_{c}$		
			C1	
		arrives at 1.9(2) $\times 10^{-9}$ or uses (2 \times 0.75) or twice candidate's energy from (i)		
			C1	
		$9.6 \times 10^{-10} \mathrm{m}$		
			A1	3
	(iii)	For fusion nuclei have to touch or separation has to be nuclear diameter		
		energy has to be sufficient to overcome the nuclear repulsion (between protons)		
			B1	
		Close enough for nuclear strong force to act		
			B1	
		answer to 4 a (ii) is much greater that 10 ⁻¹⁵ m	B1	
			– 1	

3

(b) (i) Use of pV=NkT

(Allow incorrect powers of 10 or rearrangement to make N subject)

$$1 \times 10^{16} \times 1 = N \times 1.38 \times 10^{-23} \times 1.5 \times 10^{6}$$

C1

C1

$$4.8 (3) \times 10^{32}$$

Α1

3

(ii)
$$1.67 \times 10^{-27}$$
 or 1.7×10^{-27} used

C1

$$8.0 - 8.2 \times 10^{5}$$
 (kg m⁻³) Allow ecf for N from (b)(i)

Α1

2

(c) (i) Number of protons = moles of proton/mass of protons / Mass per second × Avogadro constant used

B1

Or

No of protons = mass per second/proton mass

(allow if numerical equation seen with a subject)

4.18 or 4.19 or 4.21 \times 10³⁸ correct to at least 2 sf from correct working

В1

2

(ii) Attempt to use $E = mc^2$ with any mass and substitution for c

C1

Energy radiated = $5 \times 10^9 \times c^2$ energy radiated 4.5×10^{26} J

Α1

Number of helium nuclei formed = 1.05×10^{38} (allow 1 × 10³⁹)

B1

Approximate BE per nucleon from article = $4.28(4.5) \times 10^{-12} \text{ J}$

(Which is consistent)

4

[20]