Practice Question Set For A-Level

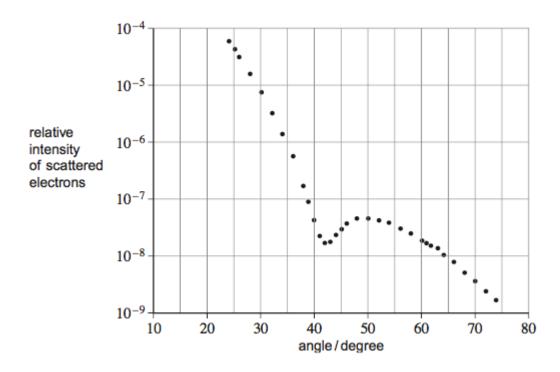
Subject: Physics

Paper-2 Topic: Fields And Their Consequences(Nuclear Physics)

direction of the beam.

(2)

Name of the Student:	
----------------------	--


Max. Marks: 18 Marks Time: 18 Minutes

Q1.

(a) The radius of a nucleus may be determined by electron diffraction. In an electron diffraction experiment a beam of electrons is fired at oxygen-16 nuclei. Each electron has an energy of 5.94×10^{-11} J.

(i) Show that the de Broglie wavelength λ of each electron in the beam is about 3.3×10^{-15} m.

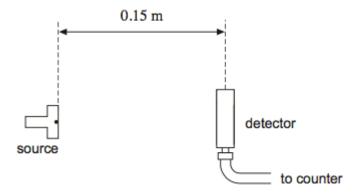
(ii) The graph shows how the relative intensity of the scattered electrons varies with angle due to diffraction by the oxygen-16 nuclei. The angle is measured from the original

The angle θ of the first minimum in the electron-diffraction pattern is given by

$$\sin \theta = \frac{0.61\lambda}{\text{nuclear radius}}$$

		radius = m
b)	Rutl	herford used the scattering of α particles to provide evidence for the structure of the atom.
	(i)	Sketch a labelled diagram showing the experimental arrangement of the apparatus used by Rutherford.
	(ii)	State and explain the results of the scattering experiment. Your answer should include the following:
		 the main observations the significance of each observation how the observtions placed an upper limit on the nuclear radius.
		The quality of your written communication will be assessed in your answer.

Calculate the radius of an oxygen-16 nucleus using information from the graph.


(6)

(Total 11 marks)

Q2.

(a)	The exposure of the general public to background radiation has changed substantially over the past 100 years.
	State one source of radiation that has contributed to this change.

(b) A student measures background radiation using a detector and determines that background radiation has a mean count-rate of 40 counts per minute. She then places a γ ray source 0.15 m from the detector as shown below.

With this separation the average count per minute was 2050.

The student then moves the detector further from the γ ray source and records the count-rate again.

(i) Calculate the average count-rate she would expect to record when the source is placed 0.90 m from the detector.

	count-rate =	min ⁻ '	
			(3)
(ii)	The average count per minute of 2050 was determined from a measurement over period of 5 minutes. Explain why the student might choose to record for longer that minutes when the separation is 0.90 m.		

.

(1)

(1)

(iii) When the detector was moved to 0.90 m the count-rate was lower than that calculated in part **(b)(i)**. It is suggested that the source may also emit β particles.

Explain how this can be checked.

 	 	 	_
 	 		_
 	 	 	_
 	 	 	_
	 	 	_
	 	 	_
 			_
 	 	 	-
			1
			(Total 7 mark
			(Total 7 mark