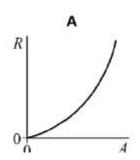
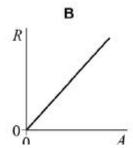
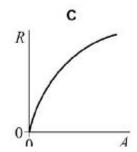
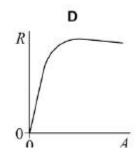
Practice Question Set For A-Level

Subject: Physics

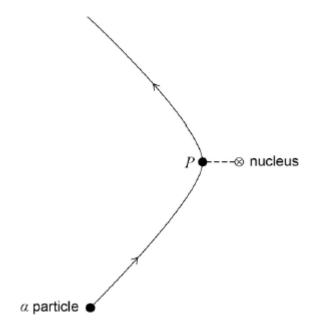

Paper-2 Topic: Fields And Their Consequences(Nuclear Physics)




Name of the	e Student:					_
Max. Marks	s: 20 Marks					Time : 20 Minutes
source		rage count r			12 hours. A detect . The average back	
What w	vill be the avera	ge count rat	e after 24 hou	ırs?		
Α	40 counts p	er minute	0			
В	45 counts p	er minute	0			
С	50 counts p	er minute	0			
D	60 counts p	er minute	0			
						(Total 1 mark)
of 4.0 >	k 10 ⁻⁶ kg hour ⁻¹ s the maximum	possible po	·	·	el which decreases	s in mass at a rate
Α	28 kW	0				
В	50 MW	0				
С	100 MW	0				
D	200 MW	0				
						(Total 1 mark)


Q3.

Which graph best shows how the radius R of an atomic nucleus varies with the nucleon number A?



- Α Ο
- В О
- C o
- D 0

(Total 1 mark)

Q4.

The diagram shows the path of an α particle deflected by the nucleus of an atom. Point P on the path is the point of closest approach of the α particle to the nucleus.

Which of the following statements about the α particle on this path is correct?

 $\label{eq:A} \textbf{A} \quad \text{Its acceleration is zero at } P.$

- 0
- **B** Its kinetic energy is greatest at P.
- 0
- $\label{eq:continuous} \textbf{C} \quad \text{Its potential energy is least at } P.$
- 0

D Its speed is least at P.

(Total 1 mark)

	Α	to abs	sorb all the uced	heat	0					
	В	to ded	crease the s	speed of	0					
	С	to abs	sorb $lpha$ and	β radiation	0					
	D		event the re	actor from	0					
									(Total 1	mark)
Q6 .										
Wh	ich of	the fol	llowing is ed		of a nucleus of $^{12}_{5}$ of a nucleus of $^{64}_{20}$	Sb ?				
Α	1	.19	0							
В	1	.25	0							
С	1	.33	0							
D	1	.40	0							
									(Total 1	mark)
Q7. Wh	nich of	the fol	llowing best	describes the	decay constar	nt for a ra	dioisotope?	,		
Α	The	e recipr	rocal of the	half-life of the ı	radioisotope.	0				
В	The	e rate c	of decay of t	he radioisotop	e.	0				
С			ant of propo of decay o	ortionality which f nuclei.	n links half-life	0				
D				ortionality which of undecayed i		0				
									(Total 1	mark)
Q8 .										
			ne activity of adioactive n	[:] a radioactive r luclide is	nuclide has fal	en to one	e sixteenth o	of its original	value. The	Э

The moderator of some nuclear reactors is made from graphite.

What is the principal purpose of the graphite?

- A 2 days.
- B 4 days.
- C 8 days.
- **D** 16 days.

(Total 1 mark)

Q9.

In the reaction shown, a proton and a deuterium nucleus, ${}^{\frac{2}{1}}H$, fuse together to form a helium nucleus, ${}^{\frac{3}{2}}He$

$$\frac{1}{2}p + \frac{1}{2}H$$
 \longrightarrow $\frac{3}{2}He + Q$

What is the value of Q, the energy released in this reaction?

mass of a proton = 1.00728 u

mass of a ${}^{1}_{1}H$ nucleus = 2.01355 u

mass of a ${}^{\frac{3}{2}}$ He nucleus = 3.01493 u

- **A** 5.0 MeV
- **B** 5.5 MeV
- **C** 6.0 MeV
- **D** 6.5 MeV

(Total 1 mark)

Q10.

The graph shows how the binding energy per nucleon varies with the nucleon number for stable nuclei.

What is the approximate total binding energy for a nucleus of $^{184}_{74}$ W?

- **A** 1.28 pJ
- 0
- **B** 94.7 pJ
- 0
- **C** 103 pJ
- **D** 230 pJ

(Total 1 mark)

Q11.

For a nuclear reactor in which the fission rate is constant, which one of the following statements is correct?

- A There is a critical mass of fuel in the reactor.
- **B** For every fission event, there is, on average, one further fission event.
- **C** A single neutron is released in every fission event.
- **D** No neutrons escape from the reactor.

(Total 1 mark)

Q12.

The reaction shown below occurs when a proton and a deuterium nucleus, $\frac{3}{1}$ H, fuse to form a helium nucleus, $\frac{3}{2}$ He.

$$_{1}P + _{2}H$$
 $_{3}He + Q$

If the energy released, Q, is 5.49 MeV, what is the mass of the helium nucleus?

mass of $\overset{2}{1}$ H nucleus = 2.01355 u mass of proton = 1.00728 u 1u is equivalent to 931.3 Me V

- **A** 0.00589 u
- **B** 3.01494 u
- **C** 3.02083 u
- **D** 3.02323 u

(Total 1 mark)

Q13.

Which line, **A** to **D**, in the table gives a combination of materials that is commonly used for moderating, controlling and shielding respectively in a nuclear reactor?

	moderating	controlling	shielding
Α	graphite	carbon	lead
В	cadmium	carbon	concrete
С	cadmium	boron	lead
D	graphite	boron	concrete

(Total 1 mark)

Q14.

The mass of the beryllium nucleus, ⁴ Be , is 7.01473 u. What is the binding energy **per nucleon** of this nucleus?

Use the following data:

mass of proton = 1.00728 umass of neutron = 1.00867 u1u = 931.3 MeV

- A 1.6 MeV nucleon⁻¹
- **B** 5.4 MeV nucleon⁻¹
- C 9.4 MeV nucleon⁻¹
- **D** 12.5 MeV nucleon⁻¹

(Total 1 mark)

Q15.

Which one of the following statements is **not** true about the control rods used in a nuclear reactor?

- **A** They must absorb neutrons.
- **B** They must slow down neutrons to thermal speeds.
- **C** They must retain their shape at high temperatures.
- **D** The length of rod in the reactor must be variable.

(Total 1 mark)

Q16.

The fusion of two deuterium nuclei produces a nuclide of helium plus a neutron and liberates 3.27 MeV of energy. How does the mass of the two deuterium nuclei compare with the combined mass of the helium nucleus and neutron?

- **A** It is 5.8×10^{-30} kg greater before fusion.
- **B** It is 5.8×10^{-30} kg greater after fusion.
- **C** It is 5.8×10^{-36} kg greater before fusion.
- **D** It is 5.8×10^{-36} kg greater after fusion.

(Total 1 mark)

Q17.

The mass of the nuclear fuel in a nuclear reactor decreases at a rate of 1.2×10^{-5} kg per hour. Assuming 100% efficiency in the reactor what is the power output of the reactor?

- **A** 100 MW
- **B** 150 MW
- C 200 MW
- **D** 300 MW

(Total 1 mark)

Q18.

The sodium isotope $^{24}_{11}$ Na is a radioactive isotope that can be produced by bombarding the aluminium isotope $^{27}_{13}$ Al with neutrons. Which line, **A** to **D**, in the table correctly represents the production of $^{24}_{11}$ Na from the aluminium isotope $^{27}_{13}$ Al and its subsequent decay?

	production	decay		
Α	$^{27}_{13}\text{A1} + {}^{1}_{0}\text{n} \rightarrow ^{24}_{11}\text{Na} + ^{4}_{2}\alpha$	$^{24}_{11} Na \rightarrow ^{24}_{12} Mg + ^{0}_{+1} \beta + \nu$		
В	$^{27}_{13}\text{A1} + {}^1_0\text{n} \rightarrow ^{24}_{11}\text{Na} + ^4_2\alpha$	$^{24}_{11} Na \rightarrow ^{24}_{12} Mg + ^{0}_{-1} \beta + \overline{\nu}$		
С	$^{27}_{13}\text{A1} + ^{1}_{0}\text{n} \rightarrow ^{24}_{11}\text{Na} + ^{3}_{2}\text{He}$	$^{24}_{11} \text{Na} \rightarrow ^{24}_{12} \text{Mg} + ^{0}_{+1} \beta + \nu$		
D	$^{27}_{13}\text{A1} + ^{1}_{0}\text{n} \rightarrow ^{24}_{11}\text{Na} + ^{3}_{2}\text{He}$	$^{24}_{11}{\rm Na} \to ^{24}_{12}{\rm Mg} + ^{0}_{-1}\beta + \overline{\nu}$		

Q19.

Why is a moderator required in a thermal nuclear reactor?

- A to prevent overheating of the nuclear core
- **B** to absorb surplus uranium nuclei
- **C** to shield the surroundings from gamma radiation
- **D** to reduce the kinetic energy of fission neutrons

(Total 1 mark)

Q20.

What is the binding energy of the nucleus 92 U?

Use the following data:

mass of a proton =1.00728 u

mass of a neutron = 1.00867 u

mass of a 92 U nucleus = 238.05076 u

1 u = 931.3 MeV

- **A** 1685 MeV
- **B** 1732 MeV
- C 1755 MeV
- **D** 1802 MeV

(Total 1 mark)