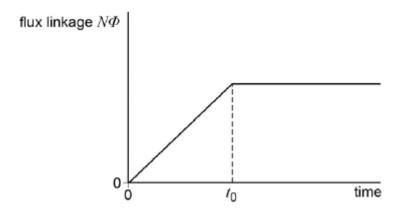
Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: Fields And Their Consequences(Magnetic Field)

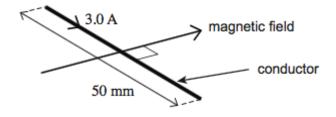

Name of the Student:_______

Max. Marks : 20 Marks

Time : 20 Minutes

Q1.

The graph shows how the flux linkage, $N\Phi$, through a coil changes when the coil is moved into a magnetic field.


The emf induced in the coil

- **A** decreases then becomes zero after time t_0 .
- **B** increases then becomes constant after time t_0 .
- **C** is constant then becomes zero after time t_0 .
- **D** is zero then increases after time t_0 .

(Total 1 mark)

Q2.

The diagram shows a horizontal conductor of length 50 mm carrying a current of 3.0 A at right angles to a uniform horizontal magnetic field of flux density 0.50 T.

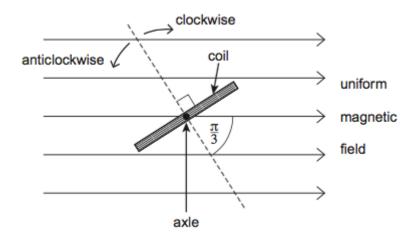
What is the magnitude and direction of the magnetic force on the conductor?

- A 0.075 N vertically upwards
- **B** 0.075 N vertically downwards

- C 75 N vertically upwards
- **D** 75 N vertically downwards

Q3.

A train is travelling at 20 m s $^{-1}$ along a horizontal track through a uniform magnetic field of flux density 4.0×10^{-5} T acting vertically downwards.

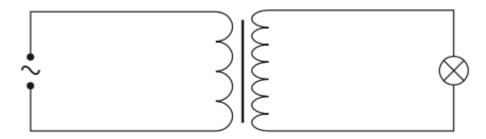

What is the emf induced between the ends of an axle 1.5 m long?

- **A** $3.0 \times 10^{-6} \text{V}$
- **B** $5.3 \times 10^{-4} \text{V}$
- **C** $1.2 \times 10^{-3} \text{V}$
- **D** $7.5 \times 10^5 \text{V}$

(Total 1 mark)

Q4.

The diagram shows a coil placed in a uniform magnetic field. In the position shown, the angle between the normal to the plane of the coil and the magnetic field is $\frac{\pi}{3}$ rad.

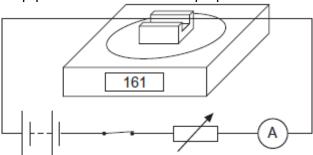


Which line, **A** to **D**, in the table shows the angles through which the coil should be rotated, and the direction of rotation, so that the flux linkage becomes (i) a maximum, and (ii) a minimum?

Angle of rotation / rad			
	(i) for maximum flux linkage	(ii) for minimum flux linkage	
Α	$\frac{\pi}{6}$ clockwise	$\frac{\pi}{3}$ anticlockwise	
В	$\frac{\pi}{6}$ anticlockwise	$\frac{\pi}{3}$ clockwise	
С	$\frac{\pi}{3}$ clockwise	$\frac{\pi}{6}$ anticlockwise	
D	$\frac{\pi}{3}$ anticlockwise	$\frac{\pi}{6}$ clockwise	

(Total 1 mark)

The primary coil of a step-up transformer is connected to a source of alternating pd. The secondary coil is connected to a lamp.


Which line, **A** to **D**, in the table correctly describes the ratios of flux linkages and currents through the secondary coil in relation to the primary coil?

	Secondary magnetic flux linkage Primary magnetic flux linkage	Secondary current Primary current
Α	<1	< 1
В	>1	< 1
С	>1	>1
D	<1	>1

(Total 1 mark)

Q6.

The diagram shows a rigidly-clamped straight horizontal current-carrying wire held mid-way between the poles of a magnet on a top-pan balance. The wire is perpendicular to the magnetic field direction.

The balance, which was zeroed before the switch was closed, read 161 g after the switch was closed. When the current is reversed and doubled, what would be the new reading on the balance?

- **A** -322 g
- **B** -161 g
- C zero
- **D** 322 g

(Total 1 mark)

Q7.

Which one of the following statements is the main reason for operating power lines at high voltage?

- A Transformers are never perfectly efficient.
- B High voltages are required by many industrial users of

electricity.

- **C** Electrical generators produce alternating current.
- Por a given amount of transmitted power, increasing the voltage decreases the current.

(Total 1 mark)

Q8.

Two electrons, \boldsymbol{X} and $\boldsymbol{Y},$ travel at right angles to a uniform magnetic field.

 ${
m X}$ experiences a magnetic force, $F_{
m X}$, and ${
m Y}$ experiences a magnetic force, $F_{
m Y}$.

What is the ratio $\frac{F_X}{F_Y}$ if the kinetic energy of X is half that of Y?

- $A \frac{1}{4}$
- B 2
- c $\frac{1}{\sqrt{2}}$
- **D** 1

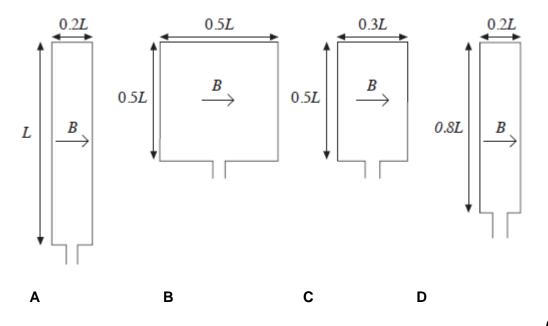
(Total 1 mark)

Q9.

Which one of the following statements is correct?

An electron follows a circular path when it is moving at right angles to

- A a uniform magnetic field.
- **B** a uniform electric field.
- **C** uniform electric and magnetic fields which are perpendicular.
- **D** uniform electric and magnetic fields which are in opposite directions.


(Total 1 mark)

Q10.

Four rectangular loops of wire A, B, C and D are each placed in a uniform magnetic field of the same flux density B. The direction of the magnetic field is parallel to the plane of the loops as shown.

When a current of 1 A is passed through each of the loops, magnetic forces act on them. The lengths of the sides of the loops are as shown.

Which loop experiences the largest couple?

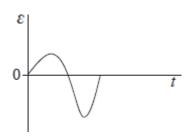
Q11.

A lamp rated at 12 V 60 W is connected to the secondary coil of a step-down transformer and is at full brightness. The primary coil is connected to a supply of 230 V. The transformer is 75% efficient. What is the current in the primary coil?

- **A** 0.25 A
- **B** 0.35 A
- **C** 3.75 A
- **D** 5.0 A

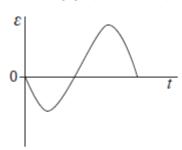
Q12.

The path followed by an electron of momentum p, carrying charge -e, which enters a magnetic field at right angles, is a circular arc of radius r.

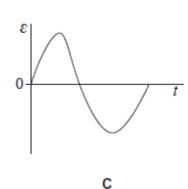

What would be the radius of the circular arc followed by an α particle of momentum 2p, carrying charge +2e, which entered the same field at right angles?

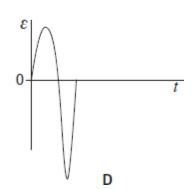
- A 2
- \mathbf{B} r
- **C** 2*r*
- **D** 4*r*

(Total 1 mark)


Q13.

When a magnet is dropped through an aluminium ring an emf is induced. A data logger connected to the ring records the variation of the induced emf ε with time t as shown below.


In a second experiment, the magnet is dropped from a greater height.


Which one of the following graphs best represents the induced emf in the second experiment?

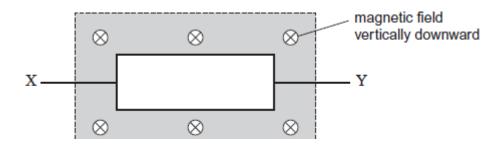
Α

В

(Total 1 mark)

Q14.

In which one of the following applications does electromagnetic induction **not** take place?


- A the generators at a nuclear power station
- **B** the ac power adapter for a laptop computer
- **C** the wings of an aircraft cutting through the Earth's magnetic field
- **D** the back up capacitor of an electric timer

(Total 1 mark)

Q15.

A rectangular coil of area A has N turns of wire. The coil is in a uniform magnetic field, as shown in the diagram.

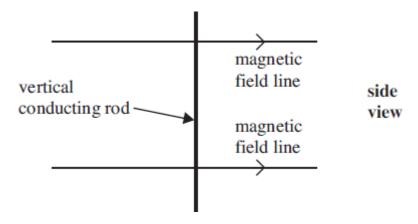
When the coil is rotated at a constant frequency f about its axis XY, an alternating emf of peak value ε_0 is induced in it.

What is the maximum value of the magnetic flux linkage through the coil?

- $A \frac{\varepsilon_0}{2\pi f}$
- $\frac{\varepsilon_0}{\pi f}$
- \mathbf{C} $\pi f \mathbf{\epsilon}_0$
- **D** $2\pi f \varepsilon_0$

(Total 1 mark)

Q16.

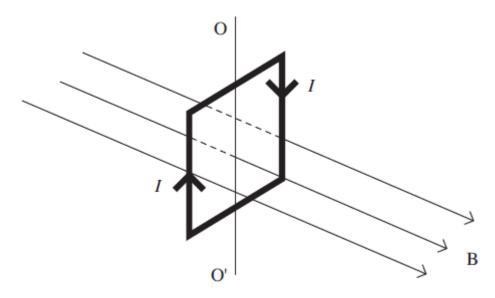

A transformer has 1150 turns on the primary coil and 500 turns on the secondary coil. The primary coil draws a current of 0.26 A from a 230 V ac supply. The current in the secondary coil is 0.50 A. What is the efficiency of the transformer?

- **A** 42%
- **B** 50%
- **C** 84%
- **D** 100%

(Total 1 mark)

Q17.

A vertical conducting rod of length l is moved at a constant velocity v through a uniform horizontal magnetic field of flux density B.



Which line, **A** to **D**, in the table gives a correct expression for the induced emf for the stated direction of the motion of the rod?

	direction of motion	induced emf
Α	vertical	$\frac{B}{lv}$
В	horizontal at right angles to the field	Blv
С	vertical	Blv
D	horizontal at right angles to the field	$\frac{B}{lv}$

Q18.

The diagram shows a vertical square coil whose plane is at right angles to a horizontal uniform magnetic field B. A current, I, is passed through the coil, which is free to rotate about a vertical axis OO'.

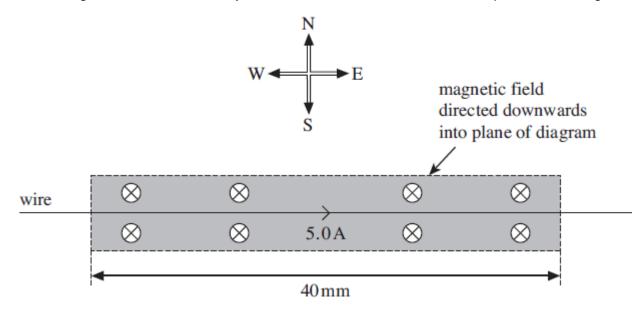
Which one of the following statements is correct?

- A The forces on the two vertical sides of the coil are equal and opposite.
- **B** A couple acts on the coil.
- **C** No forces act on the horizontal sides of the coil.
- **D** If the coil is turned through a small angle about OO' and released, it will remain in position.

(Total 1 mark)

Q19.

A transformer, which is not perfectly efficient, is connected to a 230 V rms mains supply and is used to operate a 12 V rms, 60 W lamp at normal brightness. The secondary coil of the transformer has 24 turns.


Which line, **A** to **D**, in the table is correct?

number of turns on primary coil	rms current in primary coil
---------------------------------	-----------------------------

Α	92	less than 0.26 A
В	92	more than 0.26 A
С	460	less than 0.26 A
D	460	more than 0.26 A

Q20.

A horizontal straight wire of length 40 mm is in an east-west direction as shown in the diagram. A uniform magnetic field of flux density 50 mT is directed downwards into the plane of the diagram.

When a current of 5.0 A passes through the wire from west to east, a horizontal force acts on the wire. Which line, **A** to **D**, in the table gives the magnitude and direction of this force?

	magnitude / mN	direction
Α	2.0	north
В	10.0	north
С	2.0	south
D	10.0	south

(Total 1 mark)