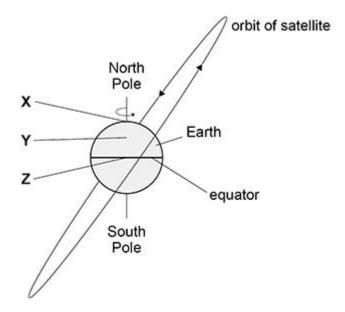
Practice Question Set For A-Level

Subject: Physics


		the Student:rks : 24 Marks	Time : 24 Minutes
Q1		Global Positioning System (GPS) uses satellites to support navigation on Earth	
	(a)	One GPS satellite is in a circular orbit at a height h above the surface of the E The Earth has mass M and radius R .	arth.
		Show that the angular speed of the satellite is given by	
		$\omega = \sqrt{\frac{GM}{(R+h)^3}}$	
			(2)
	(b)	Calculate the orbital period of the satellite when h equals 2.02×10^7 m.	

(c) The figure below shows the orbital plane of the satellite inclined at an angle to the equator. **X**, **Y** and **Z** are locations on the Earth.

(2)

orbital period = _____s

X is at the North Pole, **Y** is on a high mountain and **Z** is on the equator.

The satellite is to be launched from one of the locations.

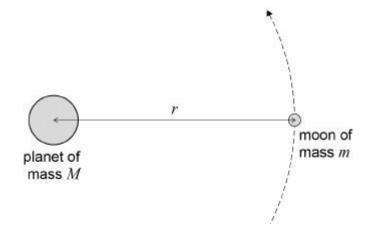
ellite into its or	Dit.			

(d) The satellite has a mass of 1630 kg.

Calculate the gravitational potential energy of the satellite when in the orbit in part (b).

gravitational potential energy = ______ J

(2)


(e) A different satellite is in a higher circular orbit.

Explain how the linear speed of this satellite compares with the linear speed of the satellite in part (a).

Q2.

The figure shows a moon of mass m in a circular orbit of radius r around a planet of mass M, where m << M.

The moon has an orbital period T.

T is related to r by

$$T^2 = kr^3$$

where k is a constant for this planet.

(a) Show that
$$k = \frac{4\pi^2}{GM}$$

(3)

(2)

(Total 10 marks)

Table 1 gives data for two of the moons of the planet Uranus.

Table 1

Name	T / days	<i>r </i> m
Miranda	1.41	1.29 × 10 ⁸
Umbriel	4.14	Х

(b) Calculate the orbital radius **X** of Umbriel.

orbital radius =	m	
		(2)

(c) Calculate the mass of Uranus.

Table 2 gives data for three more moons of Uranus.

Table 2

Name	Mass / kg	Diameter / m
Ariel	1.27×10^{21}	1.16 × 10 ⁶
Oberon	3.03×10^{21}	1.52 × 10 ⁶
Titania	3.49×10^{21}	1.58×10^6

(d) Deduce which moon in **Table 2** has the greatest escape velocity for an object on its surface. Assume the effect of Uranus is negligible.

A spring mechanism can project surface of the Earth.	et an object vertically to a maximum height of 1.0 m from th
Determine whether the same m maximum height greater than 10	echanism could project the same object vertically to a 00 m when placed on the surface of Ariel.
	(Total