Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: Thermal Physics

Name of the Student:

Max. Marks: 19 Marks Time: 19 Minutes

Mark Schemes


Q1.

(a)
$$n\left(=\frac{pV}{RT}\right) = \frac{1.5 \times 10^5 \times 1.2 \times 10^{-5}}{8.31 \times 323}$$
 (1) = (6.71 × 10⁴ mol)

number of molecules = nN_A (1) = 6.71 × 10⁻⁴ × 6.02 × 10²³ = 4.04 × 10²⁰ (1) [or equivalent solution using pv = NkT]

(3)

(b)

straight line with positive gradient (1) through (50, 1.5) (1) crosses temperature axis between –250 and –300°C (1)

(3)

(c) number of moles left in container after valve opens

$$n\left(=\frac{pV}{RT}\right) = \frac{2.0 \times 10^5 \times 1.2 \times 10^{-5}}{8.31 \times 573}$$
 (1) (= 5.04 × 10⁻⁴ mol)

∴ number of molecules left in container = $5.04 \times 10^{-4} \times 6.02 \times 10^{23}$

= 3.03×10^{20} (1) ∴ number of molecules that escape = $4.04 \times 10^{20} - 3.03 \times 10^{20}$ = 1.01×10^{20} (1)

[alternative (c)

 \therefore number of moles that escape (= 6.71 × 10⁻⁴ – 5.04 × 10⁻⁴)

 $= 1.67 \times 10^{-4}$

 \therefore number of molecules that escape = 1.67 × 10⁻⁴ × N_A

(3)

Q2.

- (a) (i) quantity of energy supplied to unit mass (1) which raises temperature by 1°C [or 1K] (1)
 - (ii) quantity of energy required to change state of unit mass (1) solid to liquid [or ice to water] (1)without change of temperature (1)

(max 4)

(b) (i)
$$Q = mc\Delta\theta$$
 = 0.15 × 1200 × (58 – 18) = 7200 (J) (1)
$$P = \frac{7200}{5 \times 60} = 24 \text{ W (1)}$$

- (ii) $Q = 24 \times 7 \times 60 = 10080$ (J) **(1)** 0.15l = 10080 gives l = 67200 J kg⁻¹ **(1)**
- (iii) $24 \times 4 \times 60 = 0.15 \times s_L \times (94 58)$ (1) gives $s_L = 1070 \text{ J kg}^{-1} \text{ K}^{-1}$ (1)

(6)[10]