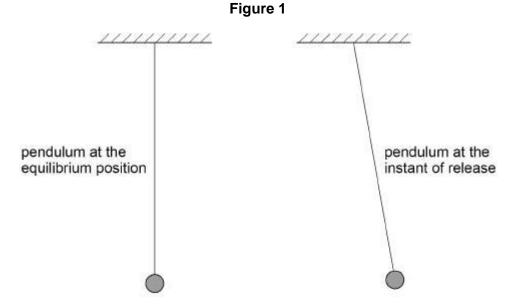
Practice Question Set For A-Level

Subject: Physics

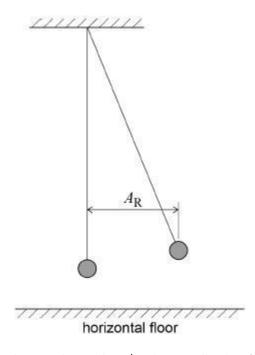
Paper-1 Topic: Further Mechanics


Max. Marks : 20 Marks Time : 20 Minute	Name of the Student:	 _
	Max. Marks : 20 Marks	Time : 20 Minutes

Q1.

A simple pendulum performs oscillations of period T in a vertical plane.

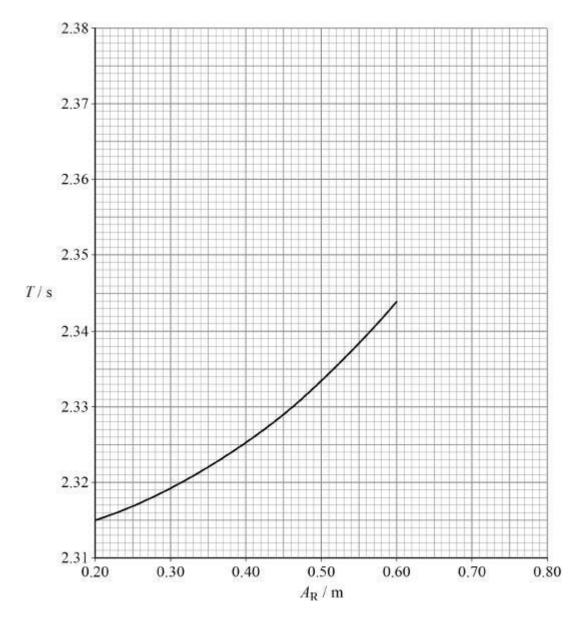
Figure 1 shows views of the pendulum at the equilibrium position and at the instant of release. **Figure 1** also shows a rectangular card marked with a vertical line.


(a) The card can be used as a fiducial mark to reduce uncertainty in the measurement of T.

Annotate **Figure 1** to show a suitable position for the fiducial mark. Explain why you chose this position.

(2)

(b) The period of the pendulum is constant for small-amplitude oscillations. Figure 2 shows an arrangement used to determine the maximum amplitude that can be considered to be small, by investigating how T varies with amplitude.


Figure 2

escribe a suital					e of the per	ndulum as it i	s releas
ou may add de	tail to Figu	re 2 to illust	trate your	answer.			
							_
							_
							_
							_
							_
							_

(c) Figure 3 shows some of the results of the experiment.

Figure 3

Estimate, using **Figure 3**, the expected percentage increase in T when $A_{\rm R}$ increases from 0.35 m to 0.70 m. Show your working.

(3)

In another experiment the pendulum is released from a fixed amplitude. The amplitudes A_n of successive oscillations are recorded, where n = 1, 2, 3, 4, 5... .

Table 1 shows six sets of readings for the amplitude A_5 .

Table 1

$A_{\scriptscriptstyle 5}$ / m	0.217	0.247	0.225	0.223	0.218	0.224
--------------------------------	-------	-------	-------	-------	-------	-------

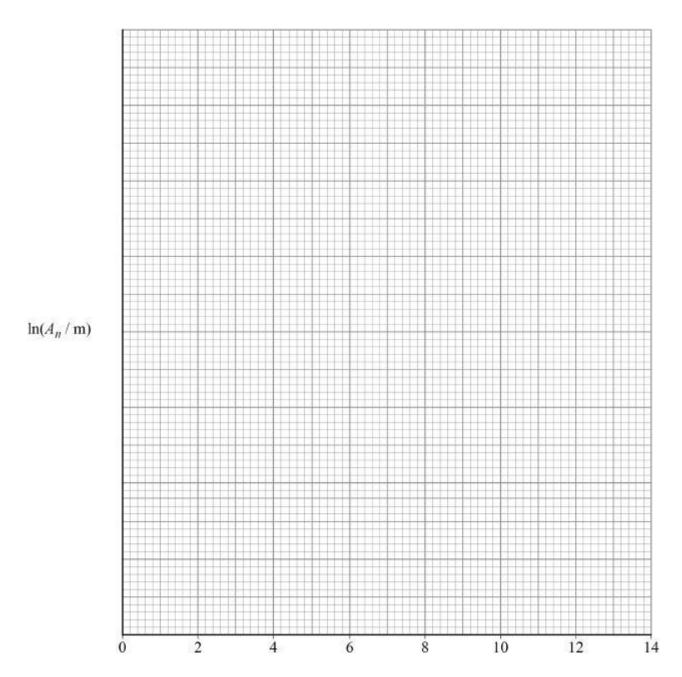
(d) Determine the result that should be recorded for A_5 .

Go on to calculate the percentage uncertainty in this result.

$A_5 = \underline{\hspace{1cm}}$	_	
percentage uncertainty =	%	(3)

(e) **Table 2** shows results for A_n and the corresponding value of $\ln(A_n / m)$ for certain values of n.

Table 2


n	$A_{\scriptscriptstyle n}$ / m	$ln(A_n / m)$
2	0.238	-1.435
4	0.225	
7	0.212	− 1.551
10	0.194	-1.640
13	0.183	-1.698

Complete Table 2.

(1)

(f) Plot on **Figure 4** a graph of $ln(A_n/m)$ against n.

Figure 4

(g) It can be shown that

$$A_n = A_0 \, \delta^{-n}$$

where

 $A_{\rm 0}$ is the amplitude of release of the pendulum δ is a constant called the damping factor.

	rom your o determ				

			(Total 15 mark
			(Total 15 mark
ne graph show	one is driven by a signal generator (oscil the variation of displacement with time timple harmonic motion.		f the cone. P is
omating with 5	51		
	4		
	3	/ \	
	2	/////	
	1+	/	
displacem	ent 0	/	
/ mm	0.\ 1.0	/.5 2.0 2.6	3.0 t/ms
	-1	\ \	7 ms
	-2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	-3		
	-4		
	-5		
) State the ti	me, in milliseconds, when P is moving at	t its maximum positive veloc	ity.
		time =	

Q2.

(c) The loudspeaker creates variations in pressure and produces a sound wave in the air around it. State the type of wave produced and describe the motion of the particles in this type of wave.

acceleration = _____

___ m s⁻²

(3)

(1)
(Total 5 marks)