Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: Electricity

Name of the Student:_	 _
Max. Marks: 19 Marks	Time: 19 Minutes

Mark Schemes

Q1.

(a) attempt to apply principle of moments either about pivot or (LH) end of ruler 1 🗸

mass = 127(.04) (g) ₂

assumption is that ruler is uniform / mass evenly distributed OR

weight acts at the centre/mid-point/middle OR

centre of mass / gravity is at the centre/mid-point/middle 3 🗸

for ₁ ✓ for evidence of moments taken expect clockwise and anticlockwise moment;

for moment about pivot expect to see either 29 or 49; for use of LH end of ruler expect 30 or 50

don't insist on seeing masses in kg, distances in m or the inclusion of 9.81 or g in the working; condone g seen on one side only rounding to 127 g earns 1 and 2 and 2

(b) force on wire is upwards **OR** ↑ 1 ✓

<u>current</u> is <u>from P to Q</u> OR <u>rightwards</u> OR (left) to (the) right OR $\rightarrow 2$

states direction of force and direction of current (or $_3 \checkmark = 0$) and makes a suitably justified deduction, eg

using left-hand rule OR LH rule

AND

B is into the page OR into plane of Figure 3 OR $\bigotimes_{3} \checkmark$

for ₁ ✓ condone 'motion is upwards'

for 2 'towards Q' OR 'positive to negative' are not enough allow logically correct (using LH rule) 3 for either downwards force with correct current AND/OR upwards force with wrong current increased flux density below wire is acceptable alternative to LH rule

(c) gradient calculated from ΔM divided by ΔI , condone read off errors of \pm 1 division; minimum I step \geq 2.0 A $_{1}$

evidence of g = 9.81 or 9.8 correctly used in working for σ or $B_2 \checkmark$

3

3

|B| in range 1.76×10^{-2} to 1.87×10^{-2} or 1.8×10^{-2} (T) $_{3}$

for $_{1}$ \checkmark expect (–)0.28 (g A^{-1}); do not penalise for missing – sign

for $_2$ look for σ = their gradient \times 9.81 (\times 10⁻³ N)

$$B = \frac{\text{their gradient} \times 9.81 (\times 10^{-3})}{15(\times 10^{-2})}$$
 : condone POT

errors

for 3 CAO by correct method only; ignore – sign if provided; no limit on maximum sf

(d)

	Reduced	No effect	Increased
Force acting on		1 🗸	
wire		'	
Force acting on			
prism	2		
Gradient of	./		
graph	3		
Vertical	. 4		
intercept	4		

₁ **✓** = 1 mark

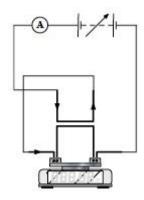
₂ ✓ = 1 mark

 $_{3}$ \checkmark and $_{4}$ \checkmark = 1 mark

allow any distinguishing mark as long as only one per row

for ✓ and ✗ in same row ignore ✗

for ✓ and ✓ in same row give no mark


ignore any crossed-out response unless only distinguishing mark on row

3

3

(e) any complete circuit connecting the power supply in Figure 6 to X and to Y that produces currents in X and in Y that travel left to right ₁

wiring correct so that **X** and **Y** are in series (see below) ₂

allow parallel circuit for 1 but reject use of additional power supply if **X** and/or **Y** is/are short-circuited award no marks; for impractical circuits eg voltmeter added in series, award no marks ignore any current arrows added to diagram

(f) strategy:

2

states that readings of M (as the dependent variable) will be measured for different values of independent variable, I or d only $_{1}\checkmark$

clearly identifies the correct control variable, d or I only;

condone $\frac{d}{L}$ = constant if I varied **OR** I^2L OR IL = constant if d varied;

it must be clear how the value of the control variable is known 2 /

states that L will be measured or gives value eg L = 5.0 cm $_3$ \checkmark

use of g to convert M reading to F; evidence may be found in expression for $k_4 \checkmark$

for $_{1}$ \checkmark condone F identified as the dependent variable or as the balance reading;

reject 'measure change in mass / change in F'

failure to make M or F the dependent variable cannot score ${}_{1}\mathcal{V}$ or ${}_{2}\mathcal{V}$

for $_{2}$ \checkmark if d is being varied and I = 5.0 A is stated, this can be taken to mean I is the control variable and the value is known

for $_1 \checkmark$ and for $_3 \checkmark$ insist that M and L are being $\underline{\text{read}}$ **OR** $\underline{\text{measured}}$ **OR** $\underline{\text{recorded}}$

for 4 / 'work out force' is not enough; reject 'acceleration' for g

MAX 3

analysis:

suggests a plot with M or F [by itself or combined with another factor] on the vertical axis and some valid manipulation of their independent variable on the horizontal axis $_{5}$

identifies correctly how k can be found using the gradient of their graph; k must be the subject of the expression given ${}_{6}\mathbf{\checkmark}$ **OR**

if suggesting a plot with $\log M$ or $\log F$ on the vertical axis etc identifying correctly how k can be found from the graph intercept ${}_6\mathbf{V}$

OR

suggesting a plot with M or F on the vertical axis etc and identifying correctly how k is found using the area under the line $_{56}$ \checkmark = 1 MAX

the intention to plot M against I^2 is taken to mean that M is the <u>dependent</u> variable and is plotted on the vertical axis

examples: plot M against I^2 will earn $_5$

and then
$$k = \frac{g \times d \times \text{gradient}}{L}$$
 will earn $_{6} \checkmark$

or plot F against $\frac{1}{d}$ will earn $_{5} \checkmark$ and then

$$k = \frac{\text{gradient}}{I^2 \times L}$$
 will earn $_6 \checkmark$ (note that when F is the dependent variable g will not appear in the expression for k)

2