Practice Question Set For A-Level

polarisation of wave 🗸

Subject: Physics

Paper-1 Topic: Waves

Name of the Student:		 Time : 22 Minutes
Mark Sch	nemes	
Q1.		
(a)	path difference for two waves Allow 'waves travel different distances' Condone out of phase	
	gives rise to a phase difference ✓ if phase and path confused only give 1 for first 2 marks	
	Destructive interference occurs allow explanation of interference	3
(b)	(Path difference =) 0.056 m ✓	
	Path difference = 2λ or wavelength = 0.028 m \checkmark e	
	Use of $f=c/\lambda$ so $f=11(10.7)\times 10^9$ Hz \checkmark Allow 2 max for 5.4×10^9 Hz or 2.7×10^9 Hz Allow ecf	3
(c)	Intensity decreases with distance 🗸	
	One wave travels further than the other 🗸	
	Amplitudes/intensities of the waves at the minimum points are not equal ✔	
	Or "do not cancel out"	max 2
(d)	The signal decreases/becomes zero ✔	
	The waves transmitted are polarised ✓	
	zero when detector at 90° to the transmitting aerial/direction of	

max 3

[11]

(a) Period = 0.2×10^{-14} (s) read off

OR

Recognisable T substituted into T = 1/f

An acceptable subject (period, time for one cycle, one cycle, T, etc.)

Allow non-standard symbol with unit seen on time.

Allow this subtraction of two times seen in f = 1/T

Use of T = 1/f and $c = f\lambda$

OR

Use of $\lambda = cT$

Use of here is:

Subject must be seen with substitutions or rearranged equations with f

= 1/T and $\lambda = c/f$

Condone power 10 error here

Condone lack of subject in vertical working where rearranged equation with appropriate subject seen at heading of column

 $6(.0) \times 10^{-7} \text{ (m)}$

Number must be expressed as 6×10^{-7} or 600×10^{-9} or equivalent not enough to see only nano prefix.

(b) (Determines a fraction of cycle)

$$\frac{0.04}{0.2}$$
 or $\frac{2}{10}$ or $\frac{1}{5}$ or 0.2 or $\frac{1.2(\times 10^{-7})}{6(\times 10^{-7})}$ or 0.2 λ seen

Condone their fraction \times 2π or their decimal \times 2π For 1st mark

 $2\pi/5$ OR 0.4 π

OR

1.26 or 1.3

Allow $8\pi/5$ OR 1.6 π

OR

5.03 or 5.0

(c) (Distance =) $3 \times 10^{-7} \times 2.37 \times 10^{5}$ seen

OR

(Distance =) 0.07(11) (m) seen ✓

Subs into $s = \frac{1}{2} at^2$

Condone error in sub for s where formula has been otherwise correctly

3

2

9.88 (3 sf only) ✓

Alternative:

$$3 \times 10 - 7 \times 2.37 \times 105$$

 1^{st} mark average speed = 0.12

$$a = \frac{2 \times \text{their average speed}}{2 \times 2 \times 2 \times 2}$$

2nd mark 0.12

3rd mark 9.88

3

- (d) Draws a tangent to the curve at approximately
 - t = 120 ms and attempts a gradient calculation ✓

Tangent must be a straight line that touches curve and divergent from curve before 90 ms and after 150 ms

(Gradient =) 1.2 (range 1.1 to 1.3) ✔

Allow 1.2×10^{-3} (range 1.1×10^{-3} to 1.3×10^{-3}) \checkmark

Ignore units on answer line

2nd mark is dependent on 1st mark

Max 1 mark for correct answer in range where tangent satisfies above conditions but doesn't quite touch curve (half-square tolerance)

First alternative:

1st mark

Use of v = u +at with sub for a = 9.88 or 9.875 **and** t = 0.12

2nd mark

1.2 or 1.19 or 1.185 **only**

Second alternative:

1st mark

Use of $s = 1/2at^2$ and ds/dt = at with sub for a = 9.88 or 9.875 **and** t = 0.42

0.12

2nd mark

1.2 or 1.19 or 1.185 **only**

2

(e) (instantaneous) Velocity (of the mirror) or (instantaneous) speed (of the mirror)

Ignore any units quoted

Do not allow:

Average speed / constant speed

[11]