Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: Measurement And Their Errors

(C)	Merit Minds www.merit-minds.com
Exam Prepara	tion and Free Resources

1

1

2

Name of the Student:	
----------------------	--

Max. Marks: 20 Marks Time: 20 Minutes

Mark Schemes

Q 1.

(a) 6.75 🗸

CAO

(b) any sensible answer describing possible consequences of use of the thimble, e.g. can cause the wire to be distorted/damaged; or reduces the diameter. ✓

Accept 'the frame of the micrometer might become warped' / 'damage might occur to the screw thread mechanism' / 'may lead to the reading shown being smaller than true value'

Condone 'squeezed'. Condone 'change diameter'.

Reject 'might change the reading', 'affect results', 'cause a reading below zero', 'could lead to systematic error', 'over-tighten' or 'holds wire more securely'.

(c) fully correct calculation ₁ ✓ 2 ✓

OR

partly correct calculation 12 /

$$((2 \times 1.2\%) + 2.0\% =) 4.4\%$$

For $_{12}$ \checkmark allow any of (2 × 1.2%) **OR** 2.4% **OR** 1.2% + 2.0% **OR** 3.2% **OR** 1.44% + 2.0% **OR** 3.4% seen in working.

For 1 mark condone misreading leading to $(2 \times 2.0\%) + 1.2\% = 5.2\%$? **OR** (4% + 1.2%) = 5.2%.

(d) length of wire between oscillator and pulley ₁ ✓

mass of M 2

For ₁ ✓ allow 'distance between oscillator and pulley' or 'length of horizontal/oscillating wire' or use of annotation to Figure 2 to identify correct dimension with a symbol, eg L.

For 1 'length of wire' is insufficient.

For 2 allow 'weight of M' or 'suspended mass'.

For 2 / accept 'tension in wire'.

Reject bland 'M' or 'the mass' or 'tension'.

Treat 'mass per unit length of wire' as neutral.

2

(e) calculates $d \times f$ at least twice $_{1}\checkmark$

states how their calculations support a conclusion that f is inversely proportional to $d_2 \checkmark$

d/mm	f / Hz	(d × f) / mm s ⁻¹
0.85	28.5	24.2 (24.23)
0.68	36.0	24.5 (24.48)
0.54	44.5	24.0 (24.03)
0.44	55.5	24.4 (24.42)
0.37	65.0	24.1 (24.05)

Allow reverse working or use of readings from a line of best-fit.

For 1 condone misreading of scale of one axis, or one misreading.

For ₂ apply list principle to calculations i.e. for 2 or 3 calculations, all must be correct; for 4 calculations, condone 1 error; for 5 calculations, condone 2 errors.

Do not allow 1 sf for constant of proportionality.

(f) f values increase ₁✔

by
$$\sqrt{2}_{2}$$

For 1 allow (all) points / line / graph move(s) up.

Must not imply d changes **OR** points / line moves right **OR** that μ changes.

Treat 'graph is stretched upwards / in the y- direction' as neutral.

[10]

2

2

Q 2.

(a) identifies appropriate equipment and makes a relevant comment about how it is used

Use of plumb line (accept 'mass / weight on string')

OR

use of a metre ruler made vertical with a set-square in contact with the floor

OR

using a (long) spirit level.

Comments that the string of the plumb line / edge of metre ruler / edge of spirit level should be in contact with the projecting end of the track.

Give credit for suitable annotation to Figure 4

(b) rejects anomalous mark (at 607) ₁ ✓

calculates mean from readings of marks 2 V

For 2 expect to see readings of 581, 583, 583, 586, 588 (and 607) for centres of circles. Allow readings from left edge or from right edge, but

1

not a mix. Reject readings given to a precision greater than 0.5 mm.

Allow an arithmetic error. Expect to see 5 or 6.

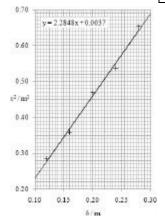
584 (mm) ₃

For 3 allow 588 (mm)

For ₃ ✓ 3 sf answer only.

(c) ruled best-fit line passing below 3rd plot and above 2nd and 4th plots 1 ·

finds gradient and multiplies by $\frac{7}{20}$


H in result in range 0.78 to 0.83 3

Withhold ₁ ✓ if line is poorly marked.

For ₂ ✓ condone one read-off error. Gradient from h step ≥ 0.10 m.

Expect gradient in range 2.20 - 2.37. Allow any appropriate use of $\frac{1}{20}$.

h/m	x^2/m^2
0.12	0.285
0.16	0.360
0.20	0.470
0.24	0.535
0.28	0.655

For 3 2 sf only.

Allow $_{1}\mathbf{\nu}_{2}\mathbf{x}_{3}\mathbf{\nu}_{1}=2$ MAX for H in range obtained using co-ordinates of a point on the line.

Allow $_1x_2x_3 \checkmark = 1$ MAX for H in range obtained using a plotted point if no best-fit line is drawn.

(e) draw a best-fit curve/line and read-off (α) where value of t is a minimum $_{1}$

For ₁ ✓ 'draw a line' is not enough.

Accept read off at 'bottom of curve' / 'where the gradient is zero' / 'at the turning point'.

Annotations to Figure 8 can earn MP1; any line of best-fit drawn does not need to be neat.

3

1

3

take more readings	s around $lpha$ when	t has minimum	value, or wo	rds to that effe	ct (owtte) 2 🗸
For 2 🗸	reject bland 'rej	peat readings'.			

2

[10]